
Sketching Volume Capacities in 
Deduplicated Storage

Danny Harnik, Moshik Hershcovitch, Yosef Shatsky, Amir Epstein, 
Ronen Kat

IBM Research - Haifa



Previous Works on Estimating Data Reduction

▪ Plenty of previous works on data reduction estimation 

[HMNSV12], [XCS12], [HKMST13], [HKS16]…

– Data is currently not reduced…

– Storage had compression and deduplication capabilities

– How much space will my data require? 

Data 



Data 

This Work

▪ Data is already in the storage system

▪ Data is already reduced

▪ So we know everything about the data reduction, right?

– Not quite

▪ Stored physical capacity of entire 

system is known

▪ Challenge: report capacity at the 

granularity in which storage is 

managed

– Volume / group / pool / file 

– W.l.o.g we will discuss volumes



Deduplication changes the picture

Before deduplication:

Each volume owns its capacity

With Deduplication: Data is shared across 
multiple volumes…

▪ Which volume owns the data?

▪ Data reduction of a volume depends on the other 
data in the system!

Vol 1

Vol 3

Vol 2

Vol 4

No Dedupe

Vol 1
Vol 3

Vol 2

Vol 4

With Dedupe



This Work

Estimate the following for every volume/group:

▪ Reclaimable capacity - How much capacity will be freed 
if a volume is moved out of a system

▪ Capacity in another system

▪ Attributed capacity – A fair sharing of capacities

▪ Breakdown to dedupe and compression savings

Motivation:

▪ The estimations are instrumental in addressing 3 different 
topics from the paper “99 Deduplication Problems”,

– Shilane et al. (HotStorage 2016)

1. Understanding capacities

2. Storage management - including cross system space 
optimizations decisions/recommendations

3. Tenant chargeback – fair capacity billing

Vol 1

Vol 3

Vol 2

Vol 4

No Dedupe

Vol 1
Vol 3

Vol 2

Vol 4

With Dedupe



Why are volume capacities hard to compute?

▪ All metadata exists in the system

▪ But it is too large to analyze efficiently…

▪ Cannot update volume stats locally on each I/O

– An I/O to one volume can effect all other 
volumes in the system

▪ Reclaimable is not additive!

– Cannot deduce reclaimable of a group by the 
reclaimable space of the volumes in the group

– Heuristics for reclaimable exist but they:

a) Do not work for groups

b) Can be grossly incorrect

Vol 1

Vol 3

Vol 2

Vol 4

No Dedupe

Vol 1
Vol 3

Vol 2

Vol 4

With Dedupe



Our Solution: Volume Sketches

▪ Sketches come from the realm of streaming algorithms

▪ A sketch - information about the system which

a) Is as small as possible

b) Sufficient to get a decent estimation of what we want to measure 

▪ We use a content-aware metadata sampling technique

▪ A variation of techniques introduced by Gibbons and Tirthapura [GT01] and Bar-
Yosef et al. [BJKST02] for distinct elements estimation

– Xie et al. use a close variant [XCS13] for deduplication

– Our use case required some changes



The Actual Method

▪ Data is split into chunks

– Could be fixed or variable sized chunking

– Compute a fingerprint per each chunk

• A random cryptographic hash of its content

• Standard method for identifying deduplication

▪ Does the fingerprint contain k=13 leading zero bits?

– If yes then it is in the sketch

– If no then ignore it

▪ Probability that a hash is in the sketch

is 1/2k= 1/8192

▪ The sketch size is smaller than the 

written data by a factor of ~3.5 Million

▪ This makes analyzing the 

sketch manageable even for 

very large systems

1 PB of Data

~ 10 TB of 
Metadata

~300MB of
sketch data



Notes on Sketches

▪ Crucial property: For every hash value h in the sketch, all the chunks in the 

system with fingerprint h will be monitored in the sketch

▪ To estimate a capacity measure simply estimate it on the sketch and then 

multiply by the sketch factor (2k = 8192) 

▪ Some subtleties when computing attributed, reclaimable, etc…

– Requires a sketch per volume/group



Estimation Accuracy

▪ Accuracy is a function of the physical capacity being estimated 

▪ Larger capacity means higher accuracy

▪ Holds for all estimations (attributed, reclaimable, etc...)

▪ Proof is a modification of the multiplicative Chernoff bound



Design and Architecture

▪ Sketches are analyzed on an external server.

– Avoids using extra CPU cycles on the 

storage systems

– Easier to deploy

– Ideal for cross system optimizations

Sketch Collection

▪ In the storage system all sketch 

metadata is always maintained

in RAM.

– Avoids extra I/Os when fetching sketch

▪ Sketch is distributed on the system 

– As opposed to aggregated

▪ The sketches method is deployed in the IBM FlashSystem A9000/A9000R

▪ Note: Sketch does not represent a point in time snapshot of the system, but 

rather a fuzzy state



Sketch Analysis

▪ Runs in two main phases:

1. Ingest phase – aggregate the distributed sketch in data structures for

– Volume sketches

– Full system sketch

2. Analysis phase – compute the various measures for all volumes in a system

– Can also query groups at this stage

• Create a group sketch by merging the volume sketches

• Run analysis on the group

▪ Emphasize analysis speed to support quick query times (e.g. on volume groups)

– This is a crucial building block for next level optimizations that enumerate a 

large number of combinations



Evaluation – Workloads 

▪ Used 3 types of data for evaluation

1. Synthetic data – various combinations of dedupe and compression ratios

– Size up to 1.5 PB

2. UBC-Dedupe Traces – collected as part of the Meyer & Bollosky study [MB11].

– 63TB of data written across 768 file systems

– Include deduplication fingerprints (no compression data)

– Available from the SNIA IOTTA

3. Call home from field – general stats about the sketches mechanism

▪ Timing examples:

Number of 

volumes
Size (TB)

Ingest 

time (sec)

Analysis 

time (sec)

Synthetic 5 1500 89 0.93

UBC-Dedup 768 63 22 0.21

Field 1 3400 980 104 4.80

Field 2 540 505 65 2.70



Accuracy Evaluation

▪ Compare the reclaimable estimations for UBC-Dedup volumes vs. actual 

▪ Normalize difference by the accuracy guarantee



Data Center Level Optimizations

▪ Our method is instrumental for cross system space optimizations

▪ As an example we implemented a greedy algorithm for space reclamation in an 

environment with multiple deduplicated storage systems. 

▪ The setting:

– 4 systems, each holding 192 random volumes from the UBC dataset

– On average each system holds 7 TBs of physical space

▪ Goal: generate a plan that frees 1 TB of space from a source system

– Plan includes: What volumes to move and where to move them to

– Objective: minimize overall space consumption

▪ Results:

– Algorithm ran between 30 to 55 seconds

– Saving between 257GB to 296GB

• Results depend on the source system…



Summary

▪ Introduce sketching for managing capacities in systems with 

deduplication

▪ Brings clarity to capacities in a deduplicated world

▪ Opens the door to many space management applications

▪ Deployed in a real world all-flash storage system



Thank You !


