Sketching Volume Capacities in Deduplicated Storage

Danny Harnik, Moshik Hershcovitch, Yosef Shatsky, Amir Epstein, Ronen Kat

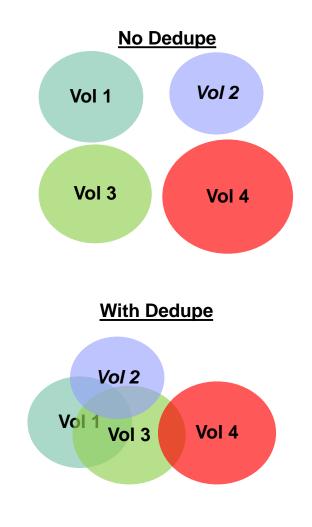
Previous Works on Estimating Data Reduction

- Plenty of previous works on data reduction estimation [HMNSV12], [XCS12], [HKMST13], [HKS16]...
 - -Data is currently **not reduced...**
 - Storage had compression and deduplication capabilities

- How much space will my data require?

This Work

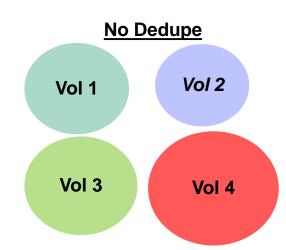
- Data is already in the storage system
- Data is already reduced
- So we know everything about the data reduction, right?
 - -Not quite


- Stored physical capacity of entire system is known
- Challenge: report capacity at the granularity in which storage is managed
 - Volume / group / pool / file
 - W.I.o.g we will discuss volumes

Deduplication changes the picture

Before deduplication: Each volume owns its capacity

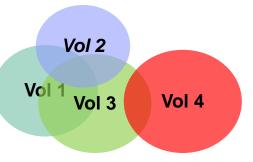
With Deduplication: Data is shared across multiple volumes...


- Which volume owns the data?
- Data reduction of a volume depends on the other data in the system!

This Work

Estimate the following for every volume/group:

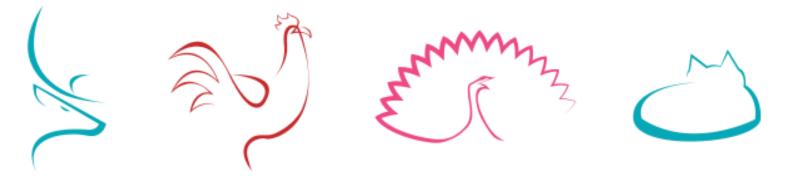
- Reclaimable capacity How much capacity will be freed if a volume is moved out of a system
- Capacity in another system
- Attributed capacity A fair sharing of capacities
- Breakdown to dedupe and compression savings



Motivation:

- The estimations are instrumental in addressing 3 different topics from the paper "99 Deduplication Problems",
 - Shilane et al. (HotStorage 2016)
- 1. Understanding capacities
- 2. Storage management including cross system space optimizations decisions/recommendations
- 3. Tenant chargeback fair capacity billing

With Dedupe


Why are volume capacities hard to compute?

- All metadata exists in the system
- But it is too large to analyze efficiently...
- Cannot update volume stats locally on each I/O
 - An I/O to one volume can effect all other volumes in the system
- Reclaimable is not additive!
 - Cannot deduce reclaimable of a group by the reclaimable space of the volumes in the group
 - Heuristics for reclaimable exist but they:
 - a) Do not work for groups
 - b) Can be grossly incorrect

Our Solution: Volume Sketches

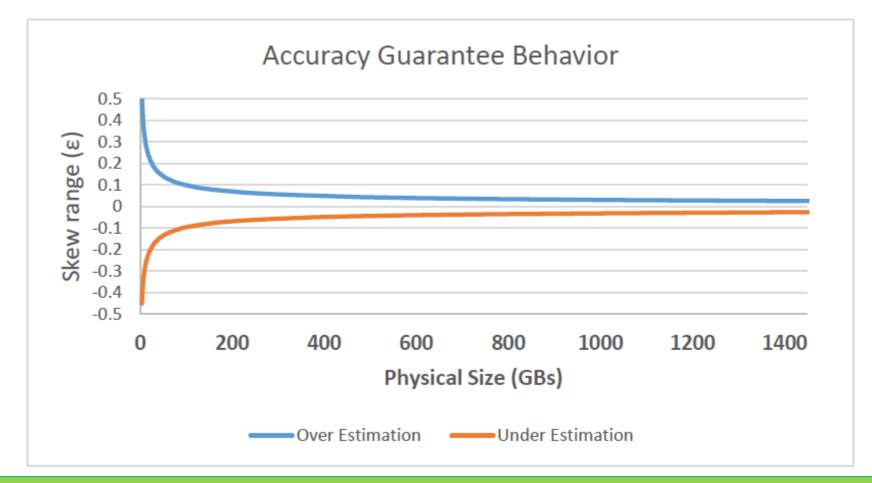
- Sketches come from the realm of streaming algorithms
- A sketch information about the system which
- a) Is as small as possible
- b) Sufficient to get a decent estimation of what we want to measure

- We use a content-aware metadata sampling technique
- A variation of techniques introduced by Gibbons and Tirthapura [GT01] and Bar-Yosef et al. [BJKST02] for distinct elements estimation
 - -Xie et al. use a close variant [XCS13] for deduplication
 - -Our use case required some changes

The Actual Method

- Data is split into chunks
 - Could be fixed or variable sized chunking
 - Compute a fingerprint per each chunk
 - A random cryptographic hash of its content
 - Standard method for identifying deduplication
- Does the fingerprint contain k=13 leading zero bits?
 - If yes then it is in the sketch
 - If **no** then ignore it
- Probability that a hash is in the sketch is 1/2^k= 1/8192
- The sketch size is smaller than the written data by a factor of ~3.5 Million
- This makes analyzing the sketch manageable even for very large systems ~300M

~300MB of sketch data

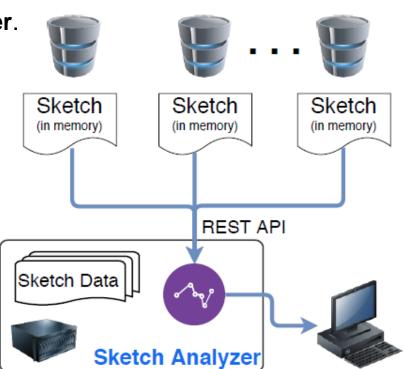

~ 10 TB of

Metadata

Notes on Sketches

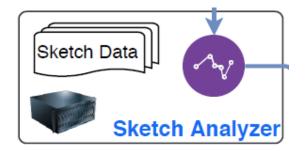
- Crucial property: For every hash value h in the sketch, all the chunks in the system with fingerprint h will be monitored in the sketch
- To estimate a capacity measure simply estimate it on the sketch and then multiply by the sketch factor (2^k = 8192)
- Some subtleties when computing attributed, reclaimable, etc...
 - Requires a sketch per volume/group

Estimation Accuracy


- Accuracy is a function of the **physical capacity** being estimated
- Larger capacity means higher accuracy
- Holds for all estimations (attributed, reclaimable, etc...)
- Proof is a modification of the multiplicative Chernoff bound

Design and Architecture

- Sketches are analyzed on an external server.
 - Avoids using extra CPU cycles on the storage systems
 - -Easier to deploy
 - Ideal for cross system optimizations


Sketch Collection

- In the storage system all sketch metadata is always maintained in RAM.
 - -Avoids extra I/Os when fetching sketch
- Sketch is distributed on the system
 - -As opposed to aggregated
- The sketches method is deployed in the IBM FlashSystem A9000/A9000R
- Note: Sketch does not represent a point in time snapshot of the system, but rather a fuzzy state

Storage Systems

Sketch Analysis

- Runs in two main phases:
- 1. Ingest phase aggregate the distributed sketch in data structures for
 - Volume sketches
 - Full system sketch
- 2. Analysis phase compute the various measures for all volumes in a system
 - Can also query groups at this stage
 - Create a group sketch by merging the volume sketches
 - Run analysis on the group
- Emphasize analysis speed to support quick query times (e.g. on volume groups)
 - This is a crucial building block for next level optimizations that enumerate a large number of combinations

Evaluation – Workloads

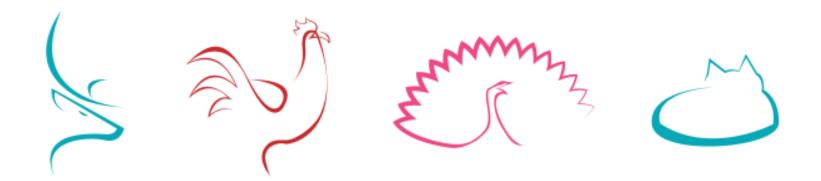

- Used 3 types of data for evaluation
- Synthetic data various combinations of dedupe and compression ratios – Size up to 1.5 PB
- 2. UBC-Dedupe Traces collected as part of the Meyer & Bollosky study [MB11].
 - -63TB of data written across 768 file systems
 - Include deduplication fingerprints (no compression data)
 - Available from the SNIA IOTTA
- 3. Call home from field general stats about the sketches mechanism

Timing examples:

	Number of volumes	Size (TB)	Ingest time (sec)	Analysis time (sec)
Synthetic	5	1500	89	0.93
UBC-Dedup	768	63	22	0.21
Field 1	3400	980	104	4.80
Field 2	540	505	65	2.70

Accuracy Evaluation

- Compare the reclaimable estimations for UBC-Dedup volumes vs. actual
- Normalize difference by the accuracy guarantee



Data Center Level Optimizations

- Our method is instrumental for cross system space optimizations
- As an example we implemented a greedy algorithm for space reclamation in an environment with multiple deduplicated storage systems.
- The setting:
 - 4 systems, each holding 192 random volumes from the UBC dataset
 - On average each system holds 7 TBs of physical space
- **Goal:** generate a plan that frees 1 TB of space from a source system
 - Plan includes: What volumes to move and where to move them to
 - Objective: minimize overall space consumption
- Results:
 - Algorithm ran between 30 to 55 seconds
 - Saving between 257GB to 296GB
 - Results depend on the source system...

Summary

- Introduce sketching for managing capacities in systems with deduplication
- Brings clarity to capacities in a deduplicated world
- Opens the door to many space management applications
- Deployed in a real world all-flash storage system

Thank You !